EPICENTER research summit

Embedded Model

Mark Schar Stanford University

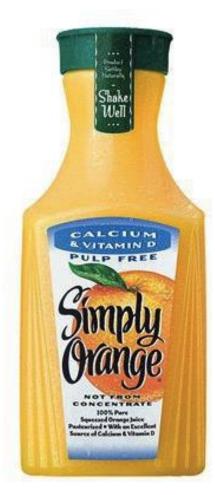
Entrepreneurial Curriculum -The Challenge

Are we doing enough to help engineering students succeed in the working world?

 - 3 out of 4 engineering graduates are employed by "private industry or business."¹

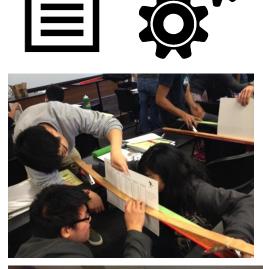
National Center for Education Statistics² 2010-11:

- 76K undergraduate engineering degrees
- **364K** undergraduate business degrees
- 187K graduate business degrees (MBA)
- Roughly 20% of MBA's are engineering undergraduates which means about ½ of all undergraduate engineers return for an MBA
- 1. National Survey of Recent College Graduates. US National Science Foundation (NSF); 2008 Oct p. Table 41– 42. Report No.: NSF 12-328.
- Table 317. Bachelor's, master's, and doctor's degrees conferred by degree-granting institutions, by sex of student and discipline division: 2010-11. Digest of Education Statistics, 2012. Available from: http://nces.ed.gov/programs/digest/d12/tables/dt12_317.asp


Entrepreneurial Curriculum -Overstuffed

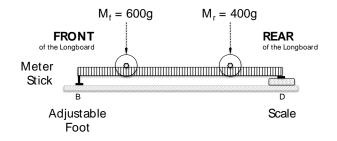
EPICENTER RESEARCH SUMMIT August 4-5, 2014 Stanford University

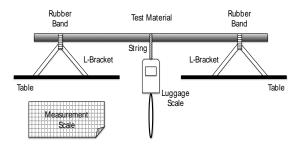
Entrepreneurial Curriculum -Embedded Model

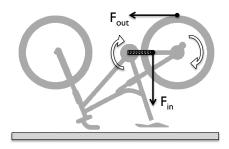


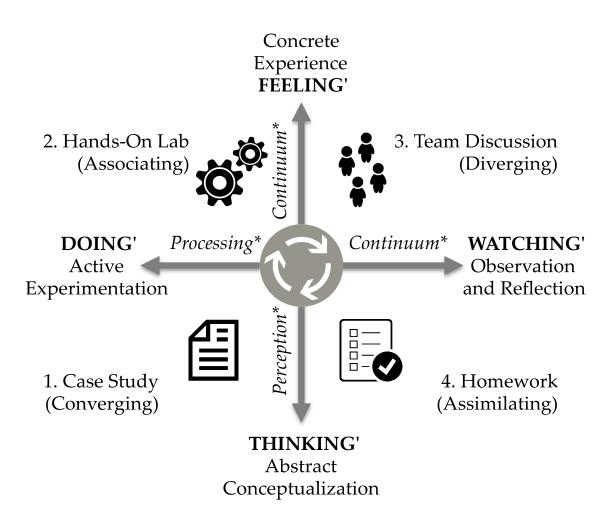
Entrepreneurial Curriculum – eSBL Scenario-Based Learning

	Madison Longboard 1:	Madison Longboard 2:	Trek Bicycle Corporation:
	Choosing a Truck	Designing a Deck	B-cycle Drive Train
Engineering Content	Free-body diagrams	Modulus of elasticity	Mechanical Advantage
	Normal Force	Deflection	Output Load/Input Load
	Equilibrium Analysis	Neutral Axis	Gears
	Moments	Cantilever beam	Speed Ratio
	Moment Center	Bending stress	Multiple FBD's
	Planar Systems	Design for deflection	
Entrepreneurial Content	Business model	Vision statement	Personas
	Value proposition	Mission statement	Empathy map
	Revenue model	SWOT analysis	Product planning
	Cost model	Business risk	Interpersonal relationships
	Profit model	Business uncertainty	Vendor relations
Lab	Moveable weights, meter sticks,	Material samples, angle brackets,	Bicycle, blue tape, paint stir stick,
	jeweler's scale	tube scale	tube scales


Starting Point: Entry-Level Mechanical Engineering (Statics)


Entrepreneurial Curriculum – eSBL Scenario-Based Learning





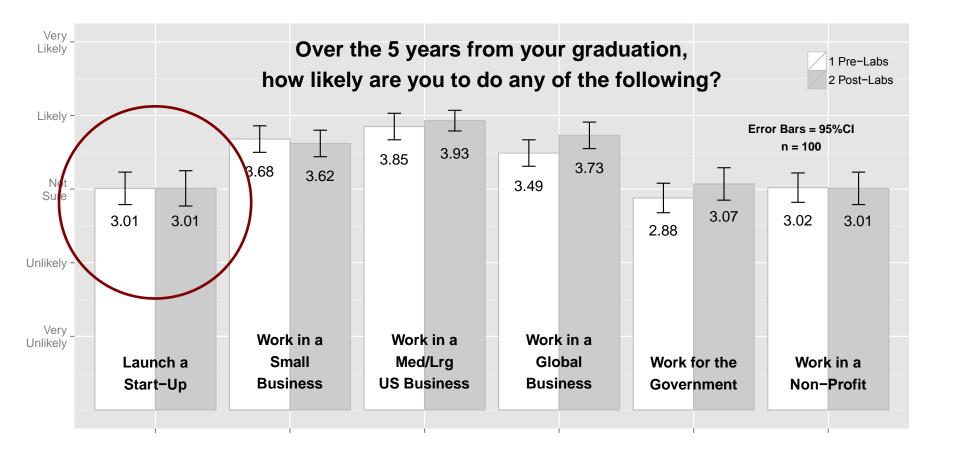
EPICENTER RESEARCH SUMMIT August 4-5, 2014 Stanford University

Entrepreneurial Curriculum – eSBL Learning Theory

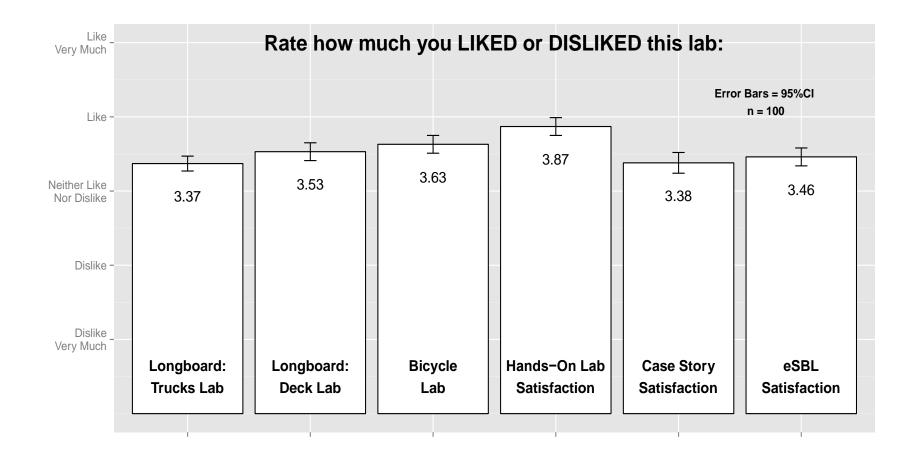
David Kolb Learning Style Inventory (LSI)

Entrepreneurial Curriculum – eSBL Is it working?

Engineering Content Questions Equal or Less Correct Pre-to-Post More Correct Pre-to-Post


Quadrant 2	Quadrant 4	
Engineering Receptive	Eager Learners	
Engineering +2.89	Engineering +3.14	
Entrepreneurial 33	Entrepreneurial + <u>3.39</u>	
Total +2.56	Total +6.53	
n = 9 (12.0%)	n = 36 (48.0%)	
Quadrant 1	Quadrant 3	
Concerning Students	Business Receptive	
Engineering -1.57	Engineering55	
Entrepreneurial -1.47	Entrepreneurial + <u>2.27</u>	
Total -3.04	Total +1.72	
n = 19 (25.3%)	n = 11 (14.7%)	

Equal or Less Correct Pre-to-Post


More Correct Pre-to-Post

Entrepreneurship Content Questions

Entrepreneurial Curriculum – eSBL Is it working?

Entrepreneurial Curriculum – eSBL Student Perspective

Entrepreneurial Curriculum – eSBL Student Perspective

"Just stick to the engineering lab. It's cool that its about longboarding and all, but why have the crazy story about some startup with two people etc? Just do the lab and be done. All this random business stuff is annoying; you hear it all over campus already. This is an engineering class. Leave it that way. If I wanted business stuff and didn't care about engineering, I'd go be an [engineering business] major."

Entrepreneurial Curriculum – eSBL Faculty Perspective

Challenge:

 "carving out" class and assignment time for topics beyond those traditionally covered. Some topics are lost

Approach:

 Carefully identify what are the key mechanics topics, concepts and procedures that are core to the course; these must remain

Challenge:

Introducing topics of design and business may be a stretch for some faculty

Approach:

- Partner with an expert in business and entrepreneurship
- Engage TA's they know more than you think

Challenge:

- Finally ... adds complexity, no doubt about it

Approach:

 Also adds energy ... as students work (and argue) with one another about how to use the mechanics and business ideas to make well thought out (rational?) decisions on product direction

Entrepreneurial Curriculum – eSBL Three Top Priorities

- Introduce the Language of Business
 - Well-established link between vocabulary and achievement
 - Words = "Containers for Concepts"
- Wrestle with Ambiguity
 - May be more than one "correct answer"
 - Practice both Convergent and Divergent Problem Solving
- Grow Business Self-Efficacy
 - "Engineering is hard, business is easy"

EPICENTER research summit AUGUST 4-5, 2014 • STANFORD UNIVERSITY

Thank you!

facebook.com/EpicenterUSA

epicenter.stanford.edu epicenter@stanford.edu

