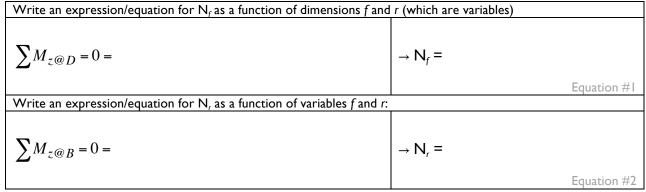
Your Name: (first and last)	Your Partner's Name: (first and last)
Your Pod: (circle)	Your Lab Teammates: (first and last names)
♦ ∀ ♦ ♣	


Part (I): Determine Forces on the Front and Rear of Test Fixture

		Front Truck Force		Rear Truck Force		
		g	N	g	N	
Forward	Test Rig					
(10 cm/30 cm)	(grams)					
Center	Test Rig					
(20 cm/20 cm)	(grams)					
Rear	Test Rig					
(30 cm/10 cm)	(grams)					

Reminder: I kilogram weighs 9.8 Newtons on Earth

Part (2): Writing the Force Equations

Part (3): Values of Dimensions f and r (continued)

	Normal Kick Style – Dimensions for <i>f</i> and <i>r</i>								
Stance:	$r_1 = r_2 =$								
Front	f = 10 cm	60 cm	80 cm						
Center	f =20 cm	70 cm	90 cm						
Rear	f =30 cm	80 cm	100 cm						

Mongo Kick Style – Dimensions for f and r						
	$f_1 = f_2 =$					
r =70 cm	I cm	19 cm				
r =80 cm	II cm	29 cm				
r =90 cm	21 cm	39 cm				

Choose values of f and r from table above; calculate **maximum** values of N_f and N_R using Equations #1 and #2. Base your calculations on ideal masses of 600g (.6kg) and 400g (.4kg). Remember, 60% of the weight is in the front.

	Normal Kick Style								
_	N	f =	r =						
N _{F,max} =									
N _{R,max} =									
	Mongo Kick	Style							
N _{F,max} =									
N _{R,max} =									

Part (4): Experimental Verification of Calculations

Transfer the calculated maximum values for $N_{\text{F,max}}$ and $N_{\text{R,max}}$ into the gray boxes below. Perform the measurements using your test rig to confirm answers.

Normal Kick	N _{max} (above)	Test Rig (grams)	N _{meas} (N)	Diff (N _{max} -N _{meas})	Mongo Kick	N _{max} (above)	Test Rig (grams)	N _{meas} (N)	Diff (N _{max} -N _{meas})
$N_{F,max}$					$N_{\text{F,max}}$				
$N_{R,max}$					$N_{R,max}$				

Summary of Truck Forces

Convert the calculated maximum values for $N_{F,max}$ and $N_{R,max}$ into vendor specifications. Transfer the maximum values from above, scale to a 100kg rider and apply the Impact Load Factor (ILF).

Normal Kick	N _{max} (above)	Scaled to a 100kg rider (N)	Max F w 3.0 ILF (N)	Mongo Kick	N _{max} (above)	Scaled to a 100kg rider (N)	Max F w 3.0 ILF (N)
$N_{F,max}$				$N_{F,max}$			
$N_{R,max}$				$N_{R,max}$			

Compare the **Max F** calculation with the truck specifications from vendors in the Case Study. How does this calculation help you decide which vendor to choose?

Part (5): Choosing a Truck

Discuss these questions with your lab partner. Write a brief description of the Madison Longboard **Value Proposition**, **Revenue Model** and **Cost Model**. Then make your decision about which truck vendor to use ... and you must reach agreement with your partner. Show your selection by circling an "X" below, and then list what you consider the three reasons that make this the best choice.

What is the Value Proposition of Madison Longboard?	
Describe your Revenue Model? (How will you price your product?)	
Describe your Cost Model? (What worries you about costs?)	

It is possible that Sam and Adam could agree on the engineering calculations but disagree on the design of the longboard. Think about how Sam and Adam might design the longboard differently and the resulting **advantages** and **disadvantages** of each approach, then record your thoughts below:

What is likely to be the important design decisions:	What may be the advantages of this approach?	What may be the disadvantages of this approach?
to Sam		
to Adam		

Now, make your decision: circle an "X" under a vendor name for each truck							
Vendor:	Hawkwing	Munich	Road Cruiser	Mega-T			
Front Truck	X	X	X	X			
Rear Truck	X	X	X	×			

 Table 3: Truck Supplier Comparison

Brand	Price	Load Force Capacity	Mass (g)	Finish	Axle Length	Wheel Capacity	Supplier Rating
	Price for two trucks pairs, minimum order 12, delivered	Manufacturer tested load capacity (Newtons) of an individual truck	Mass (grams) of a two- truck pair in grams	Finish style and color	Axle length end-to-end	Largest wheel diameter that will fit a truck	Hoover's Business Rating for reliability (5★ - top rating)
Hawkwing	\$32.00	2100 ± 200 N	790g	Patterned	22cm	Up to 76mm	***
Munich	\$44.00	2500 ± 200 N	850g	Gun Metal	23cm	Up to 80mm	****
Road Cruiser	\$27.00	2700 ± 300 N	1050g	Base silver	25cm	Up to 85mm	***
Mega-T	\$20.00	N/A	825g	Anodized black	25cm	Up to 80mm	N/R